Robustness of Shape Descriptors and Dynamics of Learning Vector Quantization

نویسنده

  • Anarta Ghosh
چکیده

With inspiration from psychophysical researches of the human visual system we propose a novel aspect and a method for performance evaluation of contour based shape recognition algorithms regarding their robustness to incompleteness of contours. We use complete contour representations of objects as a reference (training) set. Incomplete contour representations of the same objects are used as a test set. The performance of an algorithm is reported using the recognition rate as a function of the percentage of contour retained. We call this evaluation procedure the ICR test. We consider three types of contour incompleteness, viz., segment-wise contour deletion, occlusion and random pixel depletion. As an illustration, the robustness of two shape recognition algorithms to contour incompleteness is evaluated. These algorithms use a shape context and a distance multiset as local shape descriptors. Qualitatively, both algorithms mimic human visual perception in the sense that recognition performance monotonously increases with the degree of completeness and that they perform best in the case of random depletion and worst in the case of occluded contours. The distance multiset method performs better than the shape context method in this test framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised learning of bag-of-features shape descriptors using sparse coding

We present a method for supervised learning of shape descriptors for shape retrieval applications. Many contentbased shape retrieval approaches follow the bag-of-features (BoF) paradigm commonly used in text and image retrieval by first computing local shape descriptors, and then representing them in a ‘geometric dictionary’ using vector quantization. A major drawback of such approaches is that...

متن کامل

On the dynamics of Vector Quantization and Neural Gas

A large variety of machine learning models which aim at vector quantization have been proposed. However, only very preliminary rigorous mathematical analysis concerning their learning behavior such as convergence speed, robustness with respect to initialization, etc. exists. In this paper, we use the theory of on-line learning for an exact mathematical description of the training dynamics of Ve...

متن کامل

Learning dynamics and robustness of vector quantization and neural gas

Various alternatives have been developed to improve the winner-takes-all (WTA) mechanism in vector quantization, including the neural gas (NG). However, the behavior of these algorithms including their learning dynamics, robustness with respect to initialization, asymptotic results, etc. has only partially been studied in a rigorous mathematical analysis. The theory of on-line learning allows f...

متن کامل

بازیابی مبتنی بر شکل اجسام با توصیفگرهای بدست آمده از فرآیند رشد کانتوری

In this paper, a novel shape descriptor for shape-based object retrieval is proposed. A growing process is introduced in which a contour is reconstructed from the bounding circle of the shape. In this growing process, circle points move toward the shape in normal direction until they  get to the shape contour. Three different shape descriptors are extracted from this process: the first descript...

متن کامل

Neural Maps and Learning Vector Quantization - Theory and Applications

Neural maps and Learning Vector Quantizer are fundamental paradigms in neural vector quantization based on Hebbian learning. The beginning of this field dates back over twenty years with strong progress in theory and outstanding applications. Their success lies in its robustness and simplicity in application whereas the mathematics beyond is rather difficult. We provide an overview on recent ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006